1
0
forked from 0ad/0ad
0ad/source/simulation/TerritoryManager.cpp
janwas c0ed950657 had to remove uint and ulong from lib/types.h due to conflict with other library.
this snowballed into a massive search+destroy of the hodgepodge of
mostly equivalent types we had in use (int, uint, unsigned, unsigned
int, i32, u32, ulong, uintN).

it is more efficient to use 64-bit types in 64-bit mode, so the
preferred default is size_t (for anything remotely resembling a size or
index). tile coordinates are ssize_t to allow more efficient conversion
to/from floating point. flags are int because we almost never need more
than 15 distinct bits, bit test/set is not slower and int is fastest to
type. finally, some data that is pretty much directly passed to OpenGL
is now typed accordingly.

after several hours, the code now requires fewer casts and less
guesswork.

other changes:
- unit and player IDs now have an "invalid id" constant in the
respective class to avoid casting and -1
- fix some endian/64-bit bugs in the map (un)packing. added a
convenience function to write/read a size_t.
- ia32: change CPUID interface to allow passing in ecx (required for
cache topology detection, which I need at work). remove some unneeded
functions from asm, replace with intrinsics where possible.

This was SVN commit r5942.
2008-05-11 18:48:32 +00:00

352 lines
10 KiB
C++

#include "precompiled.h"
#include "TerritoryManager.h"
#include "graphics/Frustum.h"
#include "graphics/Camera.h"
#include "graphics/GameView.h"
#include "graphics/Model.h"
#include "graphics/Terrain.h"
#include "graphics/Unit.h"
#include "lib/allocators/allocators.h" // matrix_alloc
#include "lib/ogl.h"
#include "lib/timer.h"
#include "maths/Bound.h"
#include "maths/MathUtil.h"
#include "ps/Game.h"
#include "ps/Player.h"
#include "ps/Profile.h"
#include "simulation/Entity.h"
#include "simulation/EntityManager.h"
#include "simulation/EntityManager.h"
#include "simulation/EntityTemplate.h"
#include "simulation/LOSManager.h"
CTerritoryManager::CTerritoryManager()
{
m_TerritoryMatrix = 0;
m_DelayedRecalculate = false;
}
CTerritoryManager::~CTerritoryManager()
{
if(m_TerritoryMatrix)
{
matrix_free( (void**) m_TerritoryMatrix );
m_TerritoryMatrix = 0;
}
for( size_t i=0; i<m_Territories.size(); i++)
delete m_Territories[i];
m_Territories.clear();
}
void CTerritoryManager::Initialize()
{
CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
m_TilesPerSide = terrain->GetVerticesPerSide() - 1;
m_TerritoryMatrix = (CTerritory***) matrix_alloc( m_TilesPerSide, m_TilesPerSide, sizeof(CTerritory*) );
Recalculate();
}
void CTerritoryManager::Recalculate()
{
// Delete any territories created last time we called Recalculate()
for( size_t i=0; i<m_Territories.size(); i++)
{
if( m_Territories[i]->centre )
m_Territories[i]->centre->m_associatedTerritory = 0;
delete m_Territories[i];
}
m_Territories.clear();
// First, find all the units that are territory centres
std::vector<CEntity*> centres;
std::vector<CEntity*> entities;
g_EntityManager.GetExtant(entities);
for( size_t i=0; i<entities.size(); i++ )
{
if( !entities[i]->entf_get(ENTF_DESTROYED) && entities[i]->m_base->m_isTerritoryCentre )
centres.push_back(entities[i]);
}
const size_t mapSize = m_TilesPerSide * CELL_SIZE;
// If there aren't any centre objects, create one big Gaia territory which spans the whole map
if( centres.empty() )
{
std::vector<CVector2D> boundary;
boundary.push_back( CVector2D(0, 0) );
boundary.push_back( CVector2D(0, mapSize) );
boundary.push_back( CVector2D(mapSize, mapSize) );
boundary.push_back( CVector2D(mapSize, 0) );
CTerritory* ter = new CTerritory( g_Game->GetPlayer(0), HEntity(), boundary );
m_Territories.push_back(ter);
for( size_t x=0; x<m_TilesPerSide; x++ )
{
for( size_t z=0; z<m_TilesPerSide; z++ )
{
m_TerritoryMatrix[x][z] = ter;
}
}
}
else
{
// For each centre object, create a territory
for( size_t i=0; i<centres.size(); i++ )
{
std::vector<CVector2D> boundary;
CalculateBoundary( centres, i, boundary );
CTerritory* ter = new CTerritory( centres[i]->GetPlayer(), centres[i]->me, boundary );
centres[i]->m_associatedTerritory = ter;
m_Territories.push_back(ter);
}
// For each tile, match it to the closest centre object to it.
// TODO: Optimize this, for example by intersecting scanlines with the Voronoi polygons.
for( size_t x=0; x<m_TilesPerSide; x++ )
{
for( size_t z=0; z<m_TilesPerSide; z++ )
{
CVector2D tileLoc( (x+0.5f) * CELL_SIZE, (z+0.5f) * CELL_SIZE );
float bestSquareDist = 1e20f;
for( size_t i=0; i<centres.size(); i++ )
{
CVector2D centreLoc( centres[i]->m_position.X, centres[i]->m_position.Z );
float squareDist = (centreLoc - tileLoc).length2();
if( squareDist < bestSquareDist )
{
bestSquareDist = squareDist;
m_TerritoryMatrix[x][z] = m_Territories[i];
}
}
}
}
}
}
void CTerritoryManager::DelayedRecalculate()
{
// This is useful particularly for Atlas, which wants to recalculate
// the boundaries as you move an object around but which doesn't want
// to waste time recalculating multiple times per frame
m_DelayedRecalculate = true;
}
CTerritory* CTerritoryManager::GetTerritory(int x, int z)
{
debug_assert( (size_t) x < m_TilesPerSide && (size_t) z < m_TilesPerSide );
return m_TerritoryMatrix[x][z];
}
CTerritory* CTerritoryManager::GetTerritory(float x, float z)
{
ssize_t ix, iz;
CTerrain::CalcFromPosition(x, z, ix, iz);
return GetTerritory(ix, iz);
}
// Calculate the boundary points of a given territory into the given vector
void CTerritoryManager::CalculateBoundary( std::vector<CEntity*>& centres, size_t myIndex, std::vector<CVector2D>& boundary )
{
// Start with a boundary equal to the whole map
const size_t mapSize = m_TilesPerSide * CELL_SIZE;
boundary.push_back( CVector2D(0, 0) );
boundary.push_back( CVector2D(0, mapSize) );
boundary.push_back( CVector2D(mapSize, mapSize) );
boundary.push_back( CVector2D(mapSize, 0) );
// Clip this polygon against the perpendicular bisector between this centre and each other territory centre
CVector2D myPos( centres[myIndex]->m_position.X, centres[myIndex]->m_position.Z );
for( size_t i=0; i<centres.size(); i++ )
{
if( i != myIndex )
{
CVector2D itsPos( centres[i]->m_position.X, centres[i]->m_position.Z );
CVector2D midpoint = (myPos + itsPos) / 2.0f;
CVector2D normal = itsPos - myPos;
// Clip our polygon to the negative side of the half-space with normal "normal"
// containing point "midpoint", i.e. the side of the perpendicular bisector
// between myPos and itsPos that contains myPos. We do this by tracing around
// the polygon looking at each vertex to decide which ones to add as follows:
// - If a vertex is inside the half-space, take it.
// - If a vertex is inside but the next one is outside, also take the
// intersection of that edge with the perpendicular bisector.
// - If a vertex is outside but the next one is inside, take the
// intersection of that edge with the perpendicular bisector.
std::vector<CVector2D> newBoundary;
for( size_t j=0; j<boundary.size(); j++ )
{
CVector2D& pos = boundary[j];
float dot = (pos - midpoint).Dot(normal);
bool inside = dot < 0.0f;
size_t nextJ = (j+1) % boundary.size(); // index of next point
CVector2D& nextPos = boundary[nextJ];
float nextDot = (nextPos - midpoint).Dot(normal);
bool nextInside = nextDot < 0.0f;
if( inside )
{
newBoundary.push_back( pos );
if( !nextInside )
{
// Also add intersection of this line segment and the bisector
float t = nextDot / (-dot + nextDot);
newBoundary.push_back( pos * t + nextPos * (1.0f - t) );
}
}
else if( nextInside )
{
// Add intersection of this line segment and the bisector
float t = nextDot / (-dot + nextDot);
newBoundary.push_back( pos * t + nextPos * (1.0f - t) );
}
}
boundary = newBoundary;
}
}
}
void CTerritoryManager::RenderTerritories()
{
PROFILE( "render territories" );
if (m_DelayedRecalculate)
{
Recalculate();
m_DelayedRecalculate = false;
}
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
glLineWidth(1.5f);
CLOSManager* losMgr = g_Game->GetWorld()->GetLOSManager();
CFrustum frustum = g_Game->GetView()->GetCamera()->GetFrustum();
std::vector<CTerritory*>::iterator terr=m_Territories.begin();
for ( ; terr != m_Territories.end(); ++terr )
{
float r, g, b;
if ( (*terr)->owner->GetPlayerID() == 0 )
{
// Use a dark gray for Gaia territories since white looks a bit weird
//glColor3f( 0.65f, 0.65f, 0.65f );
r = g = b = 0.65f;
}
else
{
// Use the player's colour
const SPlayerColour& col = (*terr)->owner->GetColour();
//glColor3f(col.r, col.g, col.b);
r = col.r;
g = col.g;
b = col.b;
}
for ( size_t edge=0; edge < (*terr)->boundary.size(); edge++ )
{
const std::vector<CVector3D>& coords = (*terr)->GetEdgeCoords(edge);
CVector3D start = coords[0];
CVector3D end = coords[coords.size() - 1];
if ( !frustum.DoesSegmentIntersect(start, end) )
continue;
glBegin( GL_LINE_STRIP );
for( size_t i=0; i<coords.size(); i++ )
{
float losScale = 0.0f;
ELOSStatus los = losMgr->GetStatus(coords[i].X, coords[i].Z, g_Game->GetLocalPlayer());
if( los & LOS_VISIBLE ) losScale = 1.0f;
else if( los & LOS_EXPLORED ) losScale = 0.7f;
glColor3f( r*losScale, g*losScale, b*losScale );
glVertex3f( coords[i].X, coords[i].Y, coords[i].Z );
}
glEnd();
}
}
glEnable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_LINE_SMOOTH);
glLineWidth(1.0f);
glColor4f(1,1,1,1);
}
const std::vector<CVector3D>& CTerritory::GetEdgeCoords(size_t edge)
{
if ( edgeCoords.size() == 0 )
{
// Edge coords have not been calculated - calculate them now
edgeCoords.resize( boundary.size() );
const CTerrain* pTerrain = g_Game->GetWorld()->GetTerrain();
// Tweak the boundary to shift all edges "inwards" by 0.3 units towards the territory's centre,
// so that boundaries for adjacent territories don't overlap
std::vector<CVector2D> tweakedBoundary = boundary;
for ( size_t i=0; i<boundary.size(); i++ )
{
size_t prevI = (i+boundary.size()-1) % boundary.size();
size_t nextI = (i+1) % boundary.size();
// Figure out the direction perpendicular to each of the two edges that meet at this point.
CVector2D dir1 = (boundary[i]-boundary[prevI]).beta().Normalize();
CVector2D dir2 = (boundary[nextI]-boundary[i]).beta().Normalize();
// If you draw a picture of what our point looks like and what the two lines 0.3 units
// away from it look like, and draw a line between our point and that one as well as
// drop perpendicular lines from it to the original edges, you get this formula for the
// length and direction we have to be moved.
float angle = acosf(dir1.Dot(dir2));
tweakedBoundary[i] += (dir1 + dir2).Normalize() * 0.3f / cosf(angle/2);
}
// Calculate the heights at points TERRITORY_PRECISION_STEP apart on our edges
// and store the final vertices in edgeCoords.
for ( size_t e=0; e<boundary.size(); e++ )
{
std::vector<CVector3D>& coords = edgeCoords[e];
CVector2D start = tweakedBoundary[e];
CVector2D end = tweakedBoundary[(e+1) % boundary.size()];
float iterf = (end - start).Length() / TERRITORY_PRECISION_STEP;
for ( float i=0; i < iterf; i += TERRITORY_PRECISION_STEP )
{
CVector2D pos = Interpolate( start, end, i/iterf );
coords.push_back( CVector3D( pos.x, pTerrain->GetExactGroundLevel(pos)+0.25f, pos.y ) );
}
coords.push_back( CVector3D( end.x, pTerrain->GetExactGroundLevel(end)+0.25f, end.y ) );
}
}
return edgeCoords[edge];
}
void CTerritory::ClearEdgeCache()
{
edgeCoords.clear();
edgeCoords.resize( boundary.size() );
}