1
0
forked from 0ad/0ad
0ad/source/simulation2/helpers/Geometry.cpp
wraitii c219ee54b2 Move "IsInRange" family of functions to the Obstruction Manager and make the commutative.
These functions were placed in UnitMotion, which had nothing to do with
range checks and made them available only to moving entities for no
particular reason.

This patch also adds support for square-square range checks and
shape-shape distance checks.

Modified from a patch by bb on top of work from wraitii.

Differential Revision: https://code.wildfiregames.com/D981
This was SVN commit r22345.
2019-06-06 19:37:23 +00:00

427 lines
15 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Geometry.h"
using namespace Geometry;
// TODO: all of these things could be optimised quite easily
CFixedVector2D Geometry::GetHalfBoundingBox(const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
return CFixedVector2D(
u.X.Multiply(halfSize.X).Absolute() + v.X.Multiply(halfSize.Y).Absolute(),
u.Y.Multiply(halfSize.X).Absolute() + v.Y.Multiply(halfSize.Y).Absolute()
);
}
fixed Geometry::DistanceToSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
/*
* Relative to its own coordinate system, we have a square like:
*
* A : B : C
* : :
* - - ########### - -
* # #
* # I #
* D # 0 # E v
* # # ^
* # # |
* - - ########### - - -->u
* : :
* F : G : H
*
* where 0 is the center, u and v are unit axes,
* and the square is hw*2 by hh*2 units in size.
*
* Points in the BIG regions should check distance to horizontal edges.
* Points in the DIE regions should check distance to vertical edges.
* Points in the ACFH regions should check distance to the corresponding corner.
*
* So we just need to check all of the regions to work out which calculations to apply.
*
*/
// By symmetry (taking absolute values), we work only in the 0-B-C-E quadrant
// du, dv are the location of the point in the square's coordinate system
fixed du = point.Dot(u).Absolute();
fixed dv = point.Dot(v).Absolute();
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (du < hw) // regions B, I, G
{
if (dv < hh) // region I
return countInsideAsZero ? fixed::Zero() : std::min(hw - du, hh - dv);
else
return dv - hh;
}
else if (dv < hh) // regions D, E
{
return du - hw; // vertical edges
}
else // regions A, C, F, H
{
CFixedVector2D distance(du - hw, dv - hh);
return distance.Length();
}
}
// Same as above except it does not use Length
// For explanations refer to DistanceToSquare
fixed Geometry::DistanceToSquareSquared(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
fixed du = point.Dot(u).Absolute();
fixed dv = point.Dot(v).Absolute();
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (du < hw) // regions B, I, G
{
if (dv < hh) // region I
return countInsideAsZero ? fixed::Zero() : std::min((hw - du).Square(), (hh - dv).Square());
else
return (dv - hh).Square(); // horizontal edges
}
else if (dv < hh) // regions D, E
{
return (du - hw).Square(); // vertical edges
}
else // regions A, C, F, H
{
return (du - hw).Square() + (dv - hh).Square();
}
}
CFixedVector2D Geometry::NearestPointOnSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
/*
* Relative to its own coordinate system, we have a square like:
*
* A : : C
* : :
* - - #### B #### - -
* #\ /#
* # \ / #
* D --0-- E v
* # / \ # ^
* #/ \# |
* - - #### G #### - - -->u
* : :
* F : : H
*
* where 0 is the center, u and v are unit axes,
* and the square is hw*2 by hh*2 units in size.
*
* Points in the BDEG regions are nearest to the corresponding edge.
* Points in the ACFH regions are nearest to the corresponding corner.
*
* So we just need to check all of the regions to work out which calculations to apply.
*
*/
// du, dv are the location of the point in the square's coordinate system
fixed du = point.Dot(u);
fixed dv = point.Dot(v);
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square
{
if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E
{
if (du >= fixed::Zero()) // E
return u.Multiply(hw) + v.Multiply(dv);
else // D
return -u.Multiply(hw) + v.Multiply(dv);
}
else // B, G
{
if (dv >= fixed::Zero()) // B
return v.Multiply(hh) + u.Multiply(du);
else // G
return -v.Multiply(hh) + u.Multiply(du);
}
}
else if (-hh < dv && dv < hh) // regions D, E outside the square
{
if (du >= fixed::Zero()) // E
return u.Multiply(hw) + v.Multiply(dv);
else // D
return -u.Multiply(hw) + v.Multiply(dv);
}
else // regions A, C, F, H
{
CFixedVector2D corner;
if (du < fixed::Zero()) // A, F
corner -= u.Multiply(hw);
else // C, H
corner += u.Multiply(hw);
if (dv < fixed::Zero()) // F, H
corner -= v.Multiply(hh);
else // A, C
corner += v.Multiply(hh);
return corner;
}
}
fixed Geometry::DistanceSquareToSquare(const CFixedVector2D& relativePos, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1, const CFixedVector2D& u2, const CFixedVector2D& v2, const CFixedVector2D& halfSize2)
{
/*
* The shortest distance between two non colliding squares equals the distance between a corner
* and other square. Thus calculating all 8 those distances and taking the smallest.
* For colliding squares we simply return 0. When one of the points is inside the other square
* we depend on DistanceToSquare's countInsideAsZero. When no point is inside the other square,
* it is enough to check that two adjacent edges of one square does not collide with the other square.
*/
fixed hw1 = halfSize1.X;
fixed hh1 = halfSize1.Y;
fixed hw2 = halfSize2.X;
fixed hh2 = halfSize2.Y;
if (TestRaySquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), relativePos - u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2) ||
TestRaySquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), relativePos + u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2))
return fixed::Zero();
return std::min(std::min(std::min(
DistanceToSquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
DistanceToSquare(relativePos + u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true)),
std::min(
DistanceToSquare(relativePos - u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
DistanceToSquare(relativePos - u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true))),
std::min(std::min(
DistanceToSquare(relativePos + u2.Multiply(hw2) + v2.Multiply(hh2), u1, v1, halfSize1, true),
DistanceToSquare(relativePos + u2.Multiply(hw2) - v2.Multiply(hh2), u1, v1, halfSize1, true)),
std::min(
DistanceToSquare(relativePos - u2.Multiply(hw2) + v2.Multiply(hh2), u1, v1, halfSize1, true),
DistanceToSquare(relativePos - u2.Multiply(hw2) - v2.Multiply(hh2), u1, v1, halfSize1, true))));
}
fixed Geometry::MaxDistanceToSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (point.Dot(u).Absolute() < hw && point.Dot(v).Absolute() < hh && countInsideAsZero)
return fixed::Zero();
/*
* The maximum distance from a point to an edge of a square equals the greatest distance
* from the point to the a corner. Thus calculating all and taking the greatest.
*/
return std::max(std::max(
(point + u.Multiply(hw) + v.Multiply(hh)).Length(),
(point + u.Multiply(hw) - v.Multiply(hh)).Length()),
std::max(
(point - u.Multiply(hw) + v.Multiply(hh)).Length(),
(point - u.Multiply(hw) - v.Multiply(hh)).Length()));
}
fixed Geometry::MaxDistanceSquareToSquare(const CFixedVector2D& relativePos, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1, const CFixedVector2D& u2, const CFixedVector2D& v2, const CFixedVector2D& halfSize2)
{
/*
* The maximum distance from an edge of a square to the edge of another square
* equals the greatest distance from the any of the 16 corner corner distances.
*/
fixed hw1 = halfSize1.X;
fixed hh1 = halfSize1.Y;
return std::max(std::max(
MaxDistanceToSquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
MaxDistanceToSquare(relativePos + u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true)),
std::max(MaxDistanceToSquare(relativePos - u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
MaxDistanceToSquare(relativePos - u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true)));
}
bool Geometry::TestRaySquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
/*
* We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again).
* Various cases to consider:
* 'a' inside, 'b' inside -> no collision
* 'a' inside, 'b' outside -> no collision
* 'a' outside, 'b' inside -> collision
* 'a' outside, 'b' outside -> depends; use separating axis theorem:
* if the ray's bounding box is outside the square -> no collision
* if the whole square is on the same side of the ray -> no collision
* otherwise -> collision
* (Points on the edge are considered 'inside'.)
*/
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
fixed au = a.Dot(u);
fixed av = a.Dot(v);
if (-hw <= au && au <= hw && -hh <= av && av <= hh)
return false; // a is inside
fixed bu = b.Dot(u);
fixed bv = b.Dot(v);
if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
return true; // a is outside, b is inside
if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
return false; // ab is entirely above/below/side the square
CFixedVector2D abp = (b - a).Perpendicular();
fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
return true; // ray intersects the corner
bool sign = (s0 < fixed::Zero());
if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
return true; // ray cuts through the square
return false;
}
// Exactly like TestRaySquare with u=(1,0), v=(0,1)
bool Geometry::TestRayAASquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& halfSize)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (-hw <= a.X && a.X <= hw && -hh <= a.Y && a.Y <= hh)
return false; // a is inside
if (-hw <= b.X && b.X <= hw && -hh <= b.Y && b.Y <= hh) // TODO: isn't this subsumed by the next checks?
return true; // a is outside, b is inside
if ((a.X < -hw && b.X < -hw) || (a.X > hw && b.X > hw) || (a.Y < -hh && b.Y < -hh) || (a.Y > hh && b.Y > hh))
return false; // ab is entirely above/below/side the square
CFixedVector2D abp = (b - a).Perpendicular();
fixed s0 = abp.Dot(CFixedVector2D(hw, hh) - a);
fixed s1 = abp.Dot(CFixedVector2D(hw, -hh) - a);
fixed s2 = abp.Dot(CFixedVector2D(-hw, -hh) - a);
fixed s3 = abp.Dot(CFixedVector2D(-hw, hh) - a);
if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
return true; // ray intersects the corner
bool sign = (s0 < fixed::Zero());
if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
return true; // ray cuts through the square
return false;
}
/**
* Separating axis test; returns true if the square defined by u/v/halfSize at the origin
* is not entirely on the clockwise side of a line in direction 'axis' passing through 'a'
*/
static bool SquareSAT(const CFixedVector2D& a, const CFixedVector2D& axis, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
CFixedVector2D p = axis.Perpendicular();
if (p.Dot((u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
return true;
if (p.Dot((u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
return true;
if (p.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
return true;
if (p.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
return true;
return false;
}
bool Geometry::TestSquareSquare(
const CFixedVector2D& c0, const CFixedVector2D& u0, const CFixedVector2D& v0, const CFixedVector2D& halfSize0,
const CFixedVector2D& c1, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1)
{
// TODO: need to test this carefully
CFixedVector2D corner0a = c0 + u0.Multiply(halfSize0.X) + v0.Multiply(halfSize0.Y);
CFixedVector2D corner0b = c0 - u0.Multiply(halfSize0.X) - v0.Multiply(halfSize0.Y);
CFixedVector2D corner1a = c1 + u1.Multiply(halfSize1.X) + v1.Multiply(halfSize1.Y);
CFixedVector2D corner1b = c1 - u1.Multiply(halfSize1.X) - v1.Multiply(halfSize1.Y);
// Do a SAT test for each square vs each edge of the other square
if (!SquareSAT(corner0a - c1, -u0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0a - c1, v0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0b - c1, u0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0b - c1, -v0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner1a - c0, -u1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1a - c0, v1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1b - c0, u1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1b - c0, -v1, u0, v0, halfSize0))
return false;
return true;
}
int Geometry::GetPerimeterDistance(int x_max, int y_max, int x, int y)
{
if (x_max <= 0 || y_max <= 0)
return 0;
int quarter = x_max + y_max;
if (x == x_max && y >= 0)
return y;
if (y == y_max)
return quarter - x;
if (x == -x_max)
return 2 * quarter - y;
if (y == -y_max)
return 3 * quarter + x;
if (x == x_max)
return 4 * quarter + y;
return 0;
}
std::pair<int, int> Geometry::GetPerimeterCoordinates(int x_max, int y_max, int k)
{
if (x_max <= 0 || y_max <= 0)
return std::pair<int, int>(0, 0);
int quarter = x_max + y_max;
k %= 4 * quarter;
if (k < 0)
k += 4 * quarter;
if (k < y_max)
return std::pair<int, int>(x_max, k);
if (k < quarter + x_max)
return std::pair<int, int>(quarter - k, y_max);
if (k < 2 * quarter + y_max)
return std::pair<int, int>(-x_max, 2 * quarter - k);
if (k < 3 * quarter + x_max)
return std::pair<int, int>(k - 3 * quarter, -y_max);
return std::pair<int, int>(x_max, k - 4 * quarter);
}