1
0
forked from 0ad/0ad
0ad/source/simulation2/system/EntityMap.h
wraitii 5b46ce0778 Use templates to replace explicit serialization helpers.
By using templates appripriately we can remove the need for explicit
specification of serializers, making it easier to serialize container
types and to write new serialization helpers.

Direct serialization calls haven't been replaced in this diff.

Comments by: vladislavbelov
Differential Revision: https://code.wildfiregames.com/D3207
This was SVN commit r24427.
2020-12-19 09:10:37 +00:00

283 lines
7.5 KiB
C++

/* Copyright (C) 2013 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_ENTITYMAP
#define INCLUDED_ENTITYMAP
#include "Entity.h"
#include "simulation2/serialization/SerializeTemplates.h"
/**
* A fast replacement for map<entity_id_t, T>.
* We make the following assumptions:
* - entity id's (keys) are unique
* - modifications (add / delete) are far less frequent then look-ups
* - preformance for iteration is important
*/
template<class T> class EntityMap
{
private:
EntityMap(const EntityMap&); // non-copyable
EntityMap& operator=(const EntityMap&); // non-copyable
public:
typedef entity_id_t key_type;
typedef T mapped_type;
template<class K, class V> struct key_val {
typedef K first_type;
typedef V second_type;
K first;
V second;
};
typedef key_val<entity_id_t, T> value_type;
private:
size_t m_BufferSize; // number of elements in the buffer
size_t m_BufferCapacity; // capacity of the buffer
value_type* m_Buffer; // vector with all the mapped key-value pairs
size_t m_Count; // number of 'valid' entity id's
public:
inline EntityMap() : m_BufferSize(1), m_BufferCapacity(4096), m_Count(0)
{
// for entitymap we allocate the buffer right away
// with first element in buffer being the Invalid Entity
m_Buffer = (value_type*)malloc(sizeof(value_type) * (m_BufferCapacity + 1));
// create the first element:
m_Buffer[0].first = INVALID_ENTITY;
m_Buffer[1].first = 0xFFFFFFFF; // ensure end() always has 0xFFFFFFFF
}
inline ~EntityMap()
{
free(m_Buffer);
}
// Iterators
template<class U> struct _iter : public std::iterator<std::forward_iterator_tag, U>
{
U* val;
inline _iter(U* init) : val(init) {}
inline U& operator*() { return *val; }
inline U* operator->() { return val; }
inline _iter& operator++() // ++it
{
++val;
while (val->first == INVALID_ENTITY) ++val; // skip any invalid entities
return *this;
}
inline _iter& operator++(int) // it++
{
U* ptr = val;
++val;
while (val->first == INVALID_ENTITY) ++val; // skip any invalid entities
return ptr;
}
inline bool operator==(_iter other) { return val == other.val; }
inline bool operator!=(_iter other) { return val != other.val; }
inline operator _iter<U const>() const { return _iter<U const>(val); }
};
typedef _iter<value_type> iterator;
typedef _iter<value_type const> const_iterator;
inline iterator begin()
{
value_type* ptr = m_Buffer + 1; // skip the first INVALID_ENTITY
while (ptr->first == INVALID_ENTITY) ++ptr; // skip any other invalid entities
return ptr;
}
inline iterator end()
{
return iterator(m_Buffer + m_BufferSize);
}
inline const_iterator begin() const
{
value_type* ptr = m_Buffer + 1; // skip the first INVALID_ENTITY
while (ptr->first == INVALID_ENTITY) ++ptr; // skip any other invalid entities
return ptr;
}
inline const_iterator end() const
{
return const_iterator(m_Buffer + m_BufferSize);
}
// Size
inline bool empty() const { return m_Count == 0; }
inline size_t size() const { return m_Count; }
// Modification
void insert(const key_type key, const mapped_type& value)
{
if (key >= m_BufferCapacity) // do we need to resize buffer?
{
size_t newCapacity = m_BufferCapacity + 4096;
while (key >= newCapacity) newCapacity += 4096;
// always allocate +1 behind the scenes, because end() must have a 0xFFFFFFFF key
value_type* mem = (value_type*)realloc(m_Buffer, sizeof(value_type) * (newCapacity + 1));
if (!mem)
{
debug_warn("EntityMap::insert() realloc failed! Out of memory.");
throw std::bad_alloc(); // fail to expand and insert
}
m_BufferCapacity = newCapacity;
m_Buffer = mem;
goto fill_gaps;
}
else if (key > m_BufferSize) // weird insert far beyond the end
{
fill_gaps:
// set all entity id's to INVALID_ENTITY inside the new range
for (size_t i = m_BufferSize; i <= key; ++i)
m_Buffer[i].first = INVALID_ENTITY;
m_BufferSize = key; // extend the new size
}
value_type& item = m_Buffer[key];
key_type oldKey = item.first;
item.first = key;
if (key == m_BufferSize) // push_back
{
++m_BufferSize; // expand
++m_Count;
new (&item.second) mapped_type(value); // copy ctor to init
m_Buffer[m_BufferSize].first = 0xFFFFFFFF; // ensure end() always has 0xFFFFFFFF
}
else if(!item.first) // insert new to middle
{
++m_Count;
new (&item.second) mapped_type(value); // copy ctor to init
}
else // set existing value
{
if (oldKey == INVALID_ENTITY)
m_Count++;
item.second = value; // overwrite existing
}
}
void erase(iterator it)
{
value_type* ptr = it.val;
if (ptr->first != INVALID_ENTITY)
{
ptr->first = INVALID_ENTITY;
ptr->second.~T(); // call dtor
--m_Count;
}
}
void erase(const entity_id_t key)
{
if (key < m_BufferSize)
{
value_type* ptr = m_Buffer + key;
if (ptr->first != INVALID_ENTITY)
{
ptr->first = INVALID_ENTITY;
ptr->second.~T(); // call dtor
--m_Count;
}
}
}
inline void clear()
{
// orphan whole range
value_type* ptr = m_Buffer;
value_type* end = m_Buffer + m_BufferSize;
for (; ptr != end; ++ptr)
{
if (ptr->first != INVALID_ENTITY)
{
ptr->first = INVALID_ENTITY;
ptr->second.~T(); // call dtor
}
}
m_Count = 0; // no more valid entities
}
// Operations
inline iterator find(const entity_id_t key)
{
if (key < m_BufferSize) // is this key in the range of existing entitites?
{
value_type* ptr = m_Buffer + key;
if (ptr->first != INVALID_ENTITY)
return ptr;
}
return m_Buffer + m_BufferSize; // return iterator end()
}
inline const_iterator find(const entity_id_t key) const
{
if (key < m_BufferSize) // is this key in the range of existing entitites?
{
const value_type* ptr = m_Buffer + key;
if (ptr->first != INVALID_ENTITY)
return ptr;
}
return m_Buffer + m_BufferSize; // return iterator end()
}
inline size_t count(const entity_id_t key) const
{
if (key < m_BufferSize)
{
if (m_Buffer[key].first != INVALID_ENTITY)
return 1;
}
return 0;
}
};
template<typename T>
struct SerializeHelper<EntityMap<T>>
{
void operator()(ISerializer& serialize, const char* UNUSED(name), EntityMap<T>& value)
{
size_t len = value.size();
serialize.NumberU32_Unbounded("length", (u32)len);
size_t count = 0;
for (typename EntityMap<T>::iterator it = value.begin(); it != value.end(); ++it)
{
serialize.NumberU32_Unbounded("key", it->first);
Serializer(serialize, "value", it->second);
count++;
}
// test to see if the entityMap count wasn't wrong
// (which causes a crashing deserialisation)
ENSURE(count == len);
}
void operator()(IDeserializer& deserialize, const char* UNUSED(name), EntityMap<T>& value)
{
value.clear();
uint32_t len;
deserialize.NumberU32_Unbounded("length", len);
for (size_t i = 0; i < len; ++i)
{
entity_id_t k;
T v;
deserialize.NumberU32_Unbounded("key", k);
Serializer(deserialize, "value", v);
value.insert(k, v);
}
}
};
#endif