1
0
forked from 0ad/0ad
0ad/source/simulation/AStarEngine.cpp
Matei 44fe226dd2 # Housekeeping and pathfinder enhancements / optimization when dealing with ranged actions.
- Modified Xeromyces to no longer automatically convert element and
attribute names to lowercase, so that we can have camelCase names. We
should now be able to convert all the multi-word entity properties, like
pass_through_allies, to camelCase, like passThroughAllies, which is more
consistent with the rest of our JavaScript naming conventions. To
support the existing code that assumes lowercase element names, I made
the getElementID and getAttributeID methods (used in the EL and AT
macros) ignore case, and I changed any code that directly accessed
element names to use the right case. CEntityTemplate now converts
Names_LikeThis to names_likeThis (changing each separate "word" in the
name to camelCase). Changed the version letter in XMB filenames from A
to B to support this without requiring people to delete old XMBs.

- Enhanced the pathfinder's handling of contact paths, resulting in a
very large speedup for actions like attacking, construction, etc. The
problem was that the pathfinder used to not count a given state as the
goal unless it was exactly coincident with the target location. This is
fine when you order a unit to go exactly to a certain spot, but if
you're ordering a unit to build, gather or attack something, then the
target tile is impassable (because your target is there) and therefore
the pathfinder never declares a state final. As a result, the pathfinder
tries hundreds of extra tiles in case there is a long path that gets to
the goal, and after failing to find any path that reaches the goal, it
gives you one to the closest point it got to. To fix it, I made the
pathfinder take into account a radius around the goal in which it's OK
to be, which depends on the size of the target unit and the range of
your action.

This was SVN commit r4186.
2006-08-01 03:41:21 +00:00

488 lines
9.1 KiB
C++

#include "precompiled.h"
#include "AStarEngine.h"
/* For AStarGoalLowLevel isPassable/cost */
#include "Collision.h"
#include "ps/Game.h"
#include "ps/World.h"
#include "graphics/Patch.h"
#include "graphics/Terrain.h"
#include "ps/Profile.h"
#define DEFAULT_SEARCH_LIMIT 1000
#define DEFAULT_INIT_NODES 1000
// TODO: do this for real
#define MAXSLOPE 3500
// Node status flags
enum
{
kClear = 0x00, // empty, unexamined
kPassable = 0x01, // examined, not blocked
kBlocked = 0x02, // examined, blocked
kOpen = 0x04, // on the open list
kClosed = 0x08 // on the closed list
};
CAStarEngine::CAStarEngine()
{
mSearchLimit = DEFAULT_SEARCH_LIMIT;
for(int i=0; i<DEFAULT_INIT_NODES; i++)
{
freeNodes.push_back(new AStarNode);
}
mFlagArraySize = 300;
mFlags = new AStarNodeFlag[mFlagArraySize*mFlagArraySize];
memset(mFlags, 0, mFlagArraySize*mFlagArraySize*sizeof(AStarNodeFlag));
}
CAStarEngine::CAStarEngine(AStarGoalBase *goal)
{
CAStarEngine();
mGoal = goal;
}
CAStarEngine::~CAStarEngine()
{
delete[] mFlags;
std::vector<AStarNode*>::iterator it;
for( it = usedNodes.begin(); it != usedNodes.end(); it++)
{
delete (*it);
}
for( it = freeNodes.begin(); it != freeNodes.end(); it++)
{
delete (*it);
}
}
bool CAStarEngine::findPath(
const CVector2D &src, const CVector2D &dest, CPlayer* player, float radius )
{
mSolved = false;
int iterations = 0;
mGoal->setDestination(dest);
mGoal->setRadius(radius);
AStarNode *start = getFreeASNode();
start->coord = mGoal->getTile(src);
start->parent = NULL;
start->g = 0;
start->f = start->h = mGoal->distanceToGoal(start->coord);
clearOpen();
clearClosed();
PROFILE_START("memset cache");
memset(mFlags, 0, mFlagArraySize*mFlagArraySize*sizeof(AStarNodeFlag));
PROFILE_END("memset cache");
addToOpen(start);
AStarNode *best = NULL;
while( iterations<mSearchLimit && (best = removeBestOpenNode()) != NULL )
{
iterations++;
PROFILE_START("addToClosed");
addToClosed(best);
PROFILE_END("addToClosed");
if ( mGoal->atGoal(best->coord) )
{
/* Path solved */
mSolved = true;
break;
}
/* Get neighbors of the best node */
std::vector<CVector2D> neighbors;
PROFILE_START("get neighbors");
neighbors = mGoal->getNeighbors(best->coord, player);
PROFILE_END("get neighbors");
/* Update the neighbors of the best node */
std::vector<CVector2D>::iterator it;
for( it = neighbors.begin(); it != neighbors.end(); it++ )
{
AStarNode* N = getFreeASNode();
PROFILE_START("initialize neighbor");
N->coord = *it;
// Assign f,g,h to neighbor
N->g = best->g + mGoal->getTileCost(best->coord, N->coord);
N->h = mGoal->distanceToGoal(*it);
N->f = N->g + N->h;
N->parent = best;
PROFILE_END("initialize neighbor");
AStarNode* C;
PROFILE_START("search closed");
C = getFromClosed(N->coord);
PROFILE_END("search closed");
bool update = false;
if( C!=NULL && (N->f < C->f) )
{
PROFILE_START("remove from closed");
/* N is on Closed and N->f is better */
removeFromClosed(C);
update = true;
PROFILE_END("remove from closed");
}
if (C==NULL || update)
{
PROFILE_START("add to open");
/* N is not on Closed */
addToOpen(N);
PROFILE_END("add to open");
}
}
}
if (mSolved && best!=NULL)
{
debug_printf("Number of nodes searched: %d\n", iterations);
constructPath(best);
}
cleanup();
return mSolved;
}
void CAStarEngine::constructPath( AStarNode* end )
{
std::deque<CVector2D> path;
mPath.clear();
while( end!=NULL && (end->parent)!=NULL )
{
path.push_front(mGoal->getCoord(end->coord));
end = end->parent;
}
mPath.insert(mPath.begin(), path.begin(), path.end());
}
std::vector<CVector2D> CAStarEngine::getLastPath()
{
return mPath;
}
void CAStarEngine::setSearchLimit( int limit )
{
mSearchLimit = limit;
}
void CAStarEngine::addToOpen( AStarNode* node )
{
/* If not in open, should add, otherwise should promote */
AStarNodeFlag *flag = GetFlag(node->coord);
if (!GetIsOpen(flag))
{
mOpen.push(node);
}
else
{
mOpen.promote(node);
}
SetOpenFlag(flag);
}
AStarNode* CAStarEngine::removeBestOpenNode()
{
if (mOpen.empty())
return NULL;
AStarNode* top;
PROFILE_START("remove from open");
top = mOpen.top();
mOpen.pop();
ClearOpenFlag(GetFlag(top->coord));
PROFILE_END("remove from open");
return top;
}
void CAStarEngine::addToClosed( AStarNode* node )
{
mClosed[node->coord] = node;
SetClosedFlag(GetFlag(node->coord));
}
void CAStarEngine::removeFromClosed( AStarNode* node )
{
mClosed.erase(node->coord);
ClearClosedFlag(GetFlag(node->coord));
}
AStarNode* CAStarEngine::getFromClosed( const CVector2D& loc )
{
if (!GetIsClosed(GetFlag(loc)))
{
return NULL;
}
ASNodeHashMap::iterator it = mClosed.find(loc);
return ( it != mClosed.end() ) ? (it->second) : (NULL);
}
void CAStarEngine::clearOpen()
{
mOpen.clear();
}
void CAStarEngine::clearClosed()
{
mClosed.clear();
}
AStarNode* CAStarEngine::getFreeASNode()
{
AStarNode* ret;
PROFILE_START("allocator");
if (!freeNodes.empty())
{
ret = freeNodes.back();
freeNodes.pop_back();
}
else
{
ret = new AStarNode;
}
usedNodes.push_back(ret);
PROFILE_END("allocator");
return ret;
}
void CAStarEngine::cleanup()
{
std::vector<AStarNode*>::iterator it;
for( it = usedNodes.begin(); it != usedNodes.end(); it++)
{
freeNodes.push_back(*it);
}
usedNodes.clear();
}
void PriQueue::promote( AStarNode *node )
{
if (node == NULL)
{
return;
}
std::vector<AStarNode*>::iterator ind, first;
for( ind = c.begin(); ind!=c.end() && !((*ind)->equals(*node)); ind++ );
if (ind == c.end())
{
push(node);
return;
}
if( (*ind)->f <= node->f ) return;
first = c.begin();
int index = ind-first;
int parent = (index - 1)/2;
while ( index>0 && (*(first+parent))->f > node->f )
{
*(first+index) = *(first+parent);
index = parent;
parent = (parent - 1)/2;
}
*(first+index) = node;
}
void PriQueue::clear()
{
c.clear();
}
CVector2D TilespaceToWorldspace( const CVector2D &ts )
{
return CVector2D(ts.x*CELL_SIZE+CELL_SIZE/2, ts.y*CELL_SIZE+CELL_SIZE/2);
}
CVector2D WorldspaceToTilespace( const CVector2D &ws )
{
return CVector2D(floor(ws.x/CELL_SIZE), floor(ws.y/CELL_SIZE));
}
void AStarGoalLowLevel::setDestination( const CVector2D &dest )
{
coord = WorldspaceToTilespace(dest);
}
void AStarGoalLowLevel::setRadius( float r )
{
radius = r;
}
float AStarGoalLowLevel::getRadius()
{
return radius;
}
float AStarGoalLowLevel::distanceToGoal( const CVector2D &loc )
{
return ((coord-loc).length());
}
bool AStarGoalLowLevel::atGoal( const CVector2D &loc )
{
float dx = coord.x - loc.x;
float dy = coord.y - loc.y;
return dx*dx + dy*dy <= radius*radius;
}
float AStarGoalLowLevel::getTileCost( const CVector2D& loc1, const CVector2D& loc2 )
{
return (loc2-loc1).length() - radius;
}
bool AStarGoalLowLevel::isPassable( const CVector2D &loc, CPlayer* player )
{
CTerrain* pTerrain = g_Game->GetWorld()->GetTerrain();
int size = pTerrain->GetTilesPerSide();
if( loc.x<0 || loc.y<0 || loc.x>=size || loc.y>=size )
{
return false;
}
CVector2D wloc = TilespaceToWorldspace(loc);
float slope = pTerrain->getSlope(wloc.x, wloc.y);
if ( slope < MAXSLOPE )
{
// If no entity blocking, return true
CBoundingBox bounds(wloc.x, wloc.y, 0, CELL_SIZE, CELL_SIZE, 3);
if ( getCollisionObject(&bounds, player) == NULL )
{
return true;
}
}
return false;
}
CVector2D AStarGoalLowLevel::getCoord( const CVector2D &loc )
{
return TilespaceToWorldspace(loc);
}
CVector2D AStarGoalLowLevel::getTile( const CVector2D &loc )
{
return WorldspaceToTilespace(loc);
}
std::vector<CVector2D> AStarGoalLowLevel::getNeighbors( const CVector2D &loc, CPlayer* player )
{
std::vector<CVector2D> vec;
for( int xdiff = -1; xdiff <= 1; xdiff++ )
{
for( int ydiff = -1; ydiff <= 1; ydiff++ )
{
if ( xdiff!=0 || ydiff!=0 )
{
CVector2D c = loc;
c.x += xdiff; c.y += ydiff;
if ( isPassable(c, player) )
{
vec.push_back(c);
}
}
}
}
return vec;
}
inline AStarNodeFlag* CAStarEngine::GetFlag(const CVector2D &loc)
{
debug_assert(loc.x>=0 && loc.y>=0 && loc.x<mFlagArraySize && loc.y<mFlagArraySize);
return mFlags + (mFlagArraySize * (long)loc.x + (long)loc.y);
}
inline bool CAStarEngine::GetIsClear(AStarNodeFlag* flag)
{
return (*flag)==kClear;
}
inline bool CAStarEngine::GetIsClosed(AStarNodeFlag* flag)
{
return ((*flag) & kClosed) != kClear;
}
inline bool CAStarEngine::GetIsOpen(AStarNodeFlag* flag)
{
return ((*flag) & kOpen) != kClear;
}
inline void CAStarEngine::SetClosedFlag(AStarNodeFlag* flag)
{
*flag |= kClosed;
}
inline void CAStarEngine::SetOpenFlag(AStarNodeFlag* flag)
{
*flag |= kOpen;
}
inline void CAStarEngine::ClearClosedFlag(AStarNodeFlag* flag)
{
*flag &= -kClosed;
}
inline void CAStarEngine::ClearOpenFlag(AStarNodeFlag* flag)
{
*flag &= -kOpen;
}
inline bool CAStarEngine::GetIsPassable(AStarNodeFlag* flag)
{
return ((*flag) & kPassable) != kClear;
}
inline bool CAStarEngine::GetIsBlocked(AStarNodeFlag* flag)
{
return ((*flag) & kBlocked) != kClear;
}
inline void CAStarEngine::SetPassableFlag(AStarNodeFlag* flag)
{
*flag |= kPassable;
}
inline void CAStarEngine::SetBlockedFlag(AStarNodeFlag* flag)
{
*flag |= kBlocked;
}